Thyroid Hormone Reverses Aging-Induced Myocardial Fatty Acid Oxidation Defects and Improves the Response to Acutely Increased Afterload

نویسندگان

  • Dolena Ledee
  • Michael A. Portman
  • Masaki Kajimoto
  • Nancy Isern
  • Aaron K. Olson
چکیده

BACKGROUND Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to the development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH) to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone supplementation reverses these defects. METHODS Studies were performed on young (Young, 4-6 months) and aged (Old, 22-24 months) C57/BL6 mice at standard (50 mmHg) and high afterload (80 mmHg). Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only). Function was measured in isolated working hearts along with substrate fractional contributions (Fc) to the citric acid cycle (CAC) using perfusate with (13)C labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin. RESULTS Old mice maintained cardiac function under standard workload conditions, despite a marked decrease in unlabeled (presumably palmitate) Fc and relatively similar individual carbohydrate contributions. However, old mice exhibited reduced palmitate oxidation with diastolic dysfunction exemplified by lower -dP/dT. Thyroid hormone abrogated the functional and substrate flux abnormalities in aged mice. CONCLUSION The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardiac function potentially through restoration of fatty acid oxidation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fatty acid oxidation is required for active and quiescent brown adipose tissue maintenance and thermogenic programing

OBJECTIVE To determine the role of fatty acid oxidation on the cellular, molecular, and physiologic response of brown adipose tissue to disparate paradigms of chronic thermogenic stimulation. METHODS Mice with an adipose-specific loss of Carnitine Palmitoyltransferase 2 (Cpt2A-/-), that lack mitochondrial long chain fatty acid β-oxidation, were subjected to environmental and pharmacologic int...

متن کامل

LPS decreases fatty acid oxidation and nuclear hormone receptors in the kidney*

Inflammation produces marked changes in lipid metabolism, including increased serum fatty acids (FAs) and triglycerides (TGs), increased hepatic TG production and VLDL secretion, increased adipose tissue lipolysis, and decreased FA oxidation in liver and heart. Lipopolysaccharide (LPS) also increases TG and cholesteryl ester levels in kidneys. Here we confirm these findings and define potential...

متن کامل

Cardioprotective effects of dietary lipids evident in the time‐dependent alterations of cardiac function and gene expression following myocardial infarction

We have previously shown that prolonged high-saturated fat feeding (SAT) for 8 weeks after myocardial infarction (MI) improves ventricular function and prevents the metabolic remodeling commonly observed in heart failure. The current study was designed to delineate the interplay between markers of energy metabolism and indices of cardiac remodeling with 2 and 4 weeks of post-MI SAT in male Wist...

متن کامل

Fatty acid cycling in the fasting rat.

Adipose tissue lipolysis and fatty acid reesterification by liver and adipose tissue were investigated in rats fasted for 15 h under basal and calorigenic conditions. The fatty acid flux initiated by adipose fat lipolysis in the fasted rat is mostly futile and is characterized by reesterification of 57% of lipolyzed free fatty acid (FFA) back into adipose triglycerides (TG). About two-thirds of...

متن کامل

Activation of Peroxisome Proliferator-Activated Receptor Alpha Improves Aged and UV-Irradiated Skin by Catalase Induction

Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear hormone receptor involved in the transcriptional regulation of lipid metabolism, fatty acid oxidation, and glucose homeostasis. Its activation stimulates antioxidant enzymes such as catalase, whose expression is decreased in aged human skin. Here we investigated the expression of PPARα in aged and ultraviolet (UV)-irradiated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013